
October 1997 Volume 10, Number 2

1

$2.50 MUUGlines
This Month’s Meeting
Arne Grimstrup has kindly arranged to have a representative
from MTS provide us with a technical overview of the newest
innovation in high speed residential data communications,
ADSL (Asymmetric Digital Subscriber Line).

This technology promises up to megabits per second of
data transferred right to your home PC, far surpassing today’s
not-very-interoperable 56Kbps modems. The presentation
will include a description of how ADSL works; a comparison
to ISDN; what happens at the subscriber and the exchange
end; and what’s being offered by MTS. Naturally, with this
still being a product in development, the price and availability
of the service will be guessed at wildly by the audience with
no assistance from the MTS representative.

This month we’ll have (yes!) some door prizes! We have
about ten copies of OpenDOS from Caldera, and roughly 15
of OpenLinux Lite from the same fine company. We also have
the monthly issue of the Linux Journal to give away and
possibly others, so don’t miss your chance to enter the draw.
It’s free with your attendance! Some prizes are restricted to
members only, so feel free to sign up as you arrive.

Our meeting this month is Tuesday, the 14th of October.
We’ll be meeting at IBM Canada’s offices in the TD Centre,
at the corner of Portage and Main. We’ll gather in the lobby
on the main floor – please try to be there by about 7:15 PM.
Steve Moffat will then take us up to the meeting room just
before the meeting starts at 7:30. Don’t be late, or you may not
get in.

Parking is available either in the parkade behind the TD
building, off Albert Street, or in the ground level lot just north
of the TD building. Entrance to the lot is from Albert Street,
behind the parkade. Either way, parking is a $1.25 flat rate for
the evening. You purchase your ticket from a dispenser, so
make sure you’ve got exact change – a loonie and a quarter,
or 5 quarters.

Next Meeting
The Manitoba Unix User Group will next meet on November
18, 1997. That’s right, due to the regular meeting date (the
second Tuesday of the month) falling on November 11th
(Remembrance Day), we have rescheduled the meeting for
the third Tuesday of the month for November only. Check
your mailbox and the web site for details on the upcoming
meeting’s program.

MUUG Display at AGM
Contributed by Doug Shewfelt

The Muddy Waters Community Networks group on Saturday,
Sept. 27 held its inaugural Annual General Meeting at the St.
Boniface Hospital Research Centre.

Muddy Waters Community Networks is a new
organization set up to operate the Winnipeg node of the Blue
Sky Freenet. The Blue Sky Freenet group began several years
ago to build community networks in Manitoba, and their first
pilot freenet was in Winnipeg. Since then, several other
groups have started up freenets in Manitoba, under the umbrella
of the Blue Sky Freenet.

Blue Sky Freenet decided that it should concentrate on
developing policy and providing assistance to Manitoba groups
operating freenets. It therefore wanted another group to take
the responsibility of running the Winnipeg node on a day-to-
day basis. Some members of the Muddy Waters Computer
Society volunteered to help set up the MWCN group to run the
node.

The Annual General Meeting went well, although
organizers were visibly disappointed that the freenet
membership offered only two nominations to the board of
MWCN.

By invitation, MUUG had a display table set up in the
atrium, along with The Winnipeg Apple User Group and Blue
Sky Freenet.

We were able to show our web site and new mirror site for
Linux software, as well as a desktop computer running a
recent release of Red Hat Linux. We also had a free draw for
four copies of Caldera’s OpenLinux Lite. Although the turnout
was small, there was a lot of interest in Linux, and we were
impressed that the attendees asked some very good questions.

Special thanks go to Paul Hope for providing us with an
Ethernet connection at the Research Centre.

FTP to MUUG!
If you’re a frequent downloader of RedHat, GNU, Slackware,
or MkLinux software, patches and distributions, there’s a
great service available to you!

MUUG is now mirroring several great sites. This means
much less contention when you need those patches – no more

Volume10, Number 2 October 1997

2

‘too many users’ messages from the
FTP server. And no more slow
downloads from those popular locations
in congested Internet regions. If you’re
a MBnet member, you’ll see fairly high
efficiency transfers!

Details about how the site was set
up was provided in last month’s
newsletter, in an article by Gilbert
Detillieux, the site’s maintainer. You
can find that issue in several formats at
our web site, www.muug.mb.ca. This
month I want to remind you that Gilbert
is still looking for suggestions about
what else should be mirrored. If there
are some parts of our mirror that are of
less value to our members than
something you have in mind, let us
know! Send a message to the board
(board@muug.mb.ca) or our
webmaster.

Linux Gazette
Excerpts
A Non-Technical Look
Inside the EXT2 File
System
By Randy Appleton, randy@euclid.nmu.edu

Introduction
Everyone wants a fast computer.
However, not everyone realizes that
one of the most important factors of
computer performance is the speed of
the file system. Regardless of how fast
your CPU is, if the file system is slow
then the whole computer will also seem
slow. Many people with very fast
Pentium Pros but slow disk drives and
slower networked file systems
rediscover this fact daily.

Luckily, Linux has a very fast file
system called the Extended File System
Version 2 (EXT2). The EXT2 file system
was created by Remy Card
(card@masi.ibp.fr). This article will
show you how the EXT2 file system is
organized on disk and how it gets its
speed.

Disk Layout: Goals
There are several objectives when
deciding how to lay data out upon a
disk.

First and foremost, the data
structure should be recoverable. This
means that if there is some error while
writing data to the disk (like a silly user
pulling the power cord) the entire file
system is not lost. Although losing the
data currently being written is often
acceptable, losing all the data on the
disk is not.

Secondly, the data structure must
allow for an efficient implementation
of all needed operations. The hardest
operation to implement is normally the
hard link. When using a hard link, there
are more than one directory entry (more
than one file name) that points to the
same file data. Accessing the data by
any of the valid file names should
produce the same data.

Another hard operation involves
deleting an open file. If some application
has a file open for access, and a user
deletes the file, the application should
still be able to access the file’s data. The
data can be cleared off the disk only
when the last application closes the file.
This behavior is quite unlike DOS/
Windows, where deleting a file means
that applications who have already
begun to access the file lose all further
access. Applications that use this UNIX
behavior concerning deleted files are
more common than one might think,
and changing it would break many
applications.

Thirdly, a disk layout should
minimize seek times by clustering data
on disk. A drive needs more time to read
two pieces of data that are widely
separated on the disk than the same
sized pieces near each other. A good
disk layout can minimize disk seek time
(and maximize performance) by
clustering related data close together.

For example, parts of the same file
should be close together on disk, and
also near the directory containing the
file’s name.

Finally, the disk layout should
conserve disk space. Conserving disk
space was more important in the past,
when hard drives were small and
expensive. These days, conserving disk
space is not so important. However, one
should not waste disk space
unnecessarily.

Partitions
Partitions are the first level of disk
layout. Each disk must have one or
more partitions. The operating system
pretends each partition is a separate
logical disk, even though they may share
the same physical disk. The most
common use of partitioning is allow
more than one file system to exist on the
same physical disk, each in its own
partition. Each partition has its own
device file in the /dev directory (e.g. /
dev/hda1, /dev/hda2, etc.). Every EXT2
file system occupies one partition, and
fills the whole partition.

Groups
The EXT2 file system is divided into
groups, which are just sections of a
partition. The division into groups is
done when the file system is formatted,
and cannot change without reformatting.
Each group contains related data, and is
the unit of clustering in the EXT2 file
system. Each group contains a
superblock, a group descriptor, a block
bitmap, an inode bitmap, an inode table,
and finally data blocks, all in that order.

Superblock
Some information about a file system
belongs to the file system as a whole,
and not to any particular file or group.
This information includes the total
number of blocks within the file system,
the time it was last checked for errors,
and so on. Such information is stored in
the superblock.

October 1997 Volume 10, Number 2

3

The first superblock is the most
important one, since that is the one read
when the file system is mounted. The
information in the superblock is so
important that the file system cannot
even be mounted without it. If there
were to be a disk error while updating
the superblock, the entire file system
would be ruined. Therefore, a copy of
the superblock is kept in each group. If
the first superblock becomes corrupted,
the redundant copies can be used to fix
the error by using the command e2fsck.

Group Descriptors and Bitmaps
The next block of each group is the
group descriptor. The group descriptor
stores information on each group.
Within each group descriptor is a pointer
to the table of inodes (more on inodes in
a moment) and allocation bitmaps for
inodes and data blocks.

An allocation bitmap is simply a
list of bits describing which blocks or
inodes are in use. For example, data
block number 123 is in use if bit number
123 in the data bitmap is set. Using the
data and inode bitmaps, the file system
can determine which blocks and inodes
are in current use and which are available
for future use.

Inodes and Such
Each file on disk is associated with
exactly one inode. The inode stores
important information about the file
including the create and modify times,
the permissions on the file, and the
owner of the file. Also stored is the type
of file (regular file, directory, device
file like /dev/ttyS1, etc) and where the
file is stored on disk.

The data in the file is not stored in
the inode itself. Instead, the inode points
to the location of the data on disk. There
are fifteen pointers to data blocks within
each inode. However, this does not mean
that a file can only be fifteen blocks
long. Instead, a file can be millions of
blocks long, thanks to the indirect way

that data pointers point to data.

The first thirteen pointers point
directly to blocks containing file data. If
the file is thirteen or fewer blocks long,
then the file’s data is pointed to directly
by pointers within each inode, and can
be accessed quickly. The fourteenth
pointer is called the indirect pointer,
and points to a block of pointers, each
one of which points to data on the disk.
The fifteenth pointer is called the doubly
indirect pointer, and points at a block
containing many pointers to blocks each
of which points at data on the disk.

This scheme allows direct access to
all the data of small files (files less than
fourteen blocks long) and still allows
for very large files with only a few extra
accesses. As the table below shows,
almost all files are actually quite small.
Therefore, almost all files can be
accessed quickly with this scheme.

File Size Occurrence % Cumulative %
0-768 38.3 38.3
769-1.5K 19.8 58.1
1.5K-3K 14.2 72.3
3K-6K 9.4 81.7
6K-12K 7.1 89.8
12K+ 10.1 99.9
Table showing occurrence of various file sizes.

Inodes are stored in the inode table,
which is at a location pointed to by the
group descriptor within each group. The
location and size of the inode table is set
at format time, and cannot be changed
without reformatting. This means that
the maximum number of files in the file
system is also fixed at format time.
However, each time you format the file
system you can set the maximum
number of inodes with the -i option to
mke2fs.

Directories
No one would like a file system where
files were accessed by inode number.
Instead, people want to give textual
names to files. Directories associate
these textual names with the inode
numbers used internally by the file

system. Most people don’t realize that
directories are just files where the data
is in a special directory format. In fact,
on some older UNIXs you could run
editors on the directories, just to see
what they looked like internally
(imagine running vi /tmp).

Each directory is a list of directory
entries. Each directory entry associates
one file name with one inode number,
and consists of the inode number, the
length of the file name, and the actual
text of the file name.

The root directory is always stored
in inode number two, so that the file
system code can find it at mount time.
Subdirectories are implemented by
storing the name of the subdirectory in
the name field, and the inode number of
the subdirectory in the inode field. Hard
links are implemented by storing the
same inode number with more than one
file name. Accessing the file by either
name results in the same inode number,
and therefore the same data.

The special directories “.” and “..”
are implemented by storing the names
“.” and “..” in the directory, and the
inode number of the current and parent
directories in the inode field. The only
special treatment these two entries
receive is that they are automatically
created when any new directory is made,
and they cannot be deleted.

The File System in Action
The easiest way to understand the EXT2
file system is to watch it in action.

Accessing a file
To explain the EXT2 file system in
action, we will need two things: a
variable that holds directories named
DIR, and a path name to look up. Some
path names have many components (e.g.
/usr/X11/bin/Xrefresh) and others do
not (e.g. /vmlinuz).

Assume that some process wants to

Volume10, Number 2 October 1997

4

open a file. Each process will have
associated with it a current working
directory. All file names that do not
start with “/” are resolved relative to this
current working directory and DIR starts
at the current working directory. File
names that start with “/” are resolved
relative to the root directory (see chroot
for the one exception), and DIR starts at
the root directory.

Each directory name in the path to
be resolved is looked up in DIR as its
turn comes. This lookup yields the inode
number of the subdirectory we’re
interested in.

Next the inode of the subdirectory
is accessed . The permissions are
checked, and if you have access
permissions, then this new directory
becomes DIR. Each subdirectory in the
path is treated the same way, until only
the last component of the path remains.

When the last component of the
pathname is reached, the variable DIR
contains the directory that actually holds
the file name we’ve been looking for.
Looking in DIR tells us the inode number
of the file. Accessing this final inode
tells where the data for the file is stored.
After checking permissions, you can
access the data.

How many disk accesses were
needed to access the data you wanted?
A reasonable maximum is two per
subdirectory (one to look up the name,
the other to find the inode) and then two
more for the actual file name itself. This
effort is only done at file open time.
After a file has been opened, subsequent
accesses can use the inode’s data without
looking it up again. Further, caching
eliminates many of the accesses needed
to look up a file (more later).

Put the starting directory in DIR.
Put the pathname in PATH.
While (PATH has one than one
component)

Take one component off PATH.

Find that component in DIR
yielding the INODE.
If (permissions on INODE are not
 OK)

Return ERROR
Set DIR = INODE

End-While
Take the last component off PATH yielding
FILENAME.
Find FILENAME in DIR yielding INODE.
If (permission on INODE are not OK)

Return ERROR
Store INODE with the process for quick
later lookup.
Return SUCCESS.
Pseudo-code for opening a file.

Allocating New Data
When a new file or directory is created,
the EXT2 file system must, decide where
to store the data. If the disk is mostly
empty, then data can be stored almost
anywhere. However, performance is
maximized if the data is clustered with
other related data to minimize seek
times.

The EXT2 file system attempts to
allocate each new directory in the group
containing its parent directory, on the
theory that accesses to parent and
children directories are likely to be
closely related. The EXT2 file system
also attempts to place files in the same
group as their directory entries, because
directory accesses often lead to file
accesses. However, if the group is full,
then the new file or new directory is
placed in some other non-full group.

The data blocks needed to store
directories and files can found by
looking in the data allocation bitmap.
Any needed space in the inode table can
be found by looking in the inode
allocation bitmap.

Conclusion
It has been said that one should make
things as simple as possible, but no
simpler. The EXT2 file system is rather
more complex than most people realize,
but this complexity results in both the
full set of UNIX operations working
correctly, and good performance. The

code is robust and well tested, and serves
the Linux community well. We all owe
a debt of thanks to M. Card.

Sources for More Information
The data for the figures in this paper can
all be found in my dissertation
Improving File System Performance
with Predictive Caching. See the URL
http://euclid.nmu.edu/~randy .

An excellent paper with more
technical detail can be found at http://
s t e p . p o l y m t l . c a / ~ l d d / e x t 2 f s /
ext2fs_toc.html .

Some performance data can be
found at http://www.silkroad.com/
linux-bm.html .

Copyright © 1997, Randy Appleton
Published in Issue 21 of the Linux
Gazette, September 1997

Contact Information
To contact the MUUG board for mem-
bership information or anything else,
send e-mail to board@muug.mb.ca. We
have a Web presence as well, at http://
www.muug.mb.ca/, where you can find
all kinds of information, including de-
tails of upcoming and past meetings and
presentations and references related to
them. E-mail the editor at
editor@muug.mb.ca.

Editor’s Notes
The (lengthy) semi-technical article in
this issue and much more, including
many great tips and other discussions
can be found at the Linux Gazette web
site at:
http://www.redhat.com/linux-info/lg/

The author of last month’s book
review of Linux In A Nutshell was Kevin
McGregor; the byline was inadvertently
omitted.

